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aDepartment of Mathematics and CITIC, University of A Coruña, Campus Elviña s/n, 15071-A Coruña (Spain)

Abstract

In this article we consider XVA pricing models for European options that incorporate three stochastic

factors, namely, the price of the underlying asset and the intensities of default of the investor and the

hedger, with the corresponding stochastic differential equations (SDEs) that govern their dynamics. By

using a dynamic hedging methodology, linear and nonlinear partial differential equations (PDEs) have

been posed in [15]. In order to avoid the numerical solution PDEs with three spatial variables, we

propose a hybrid model based on PDEs in one spatial variable, keeping the two intensities of default as

stochastic coefficients of the PDEs satisfying their respective associated SDEs. For the numerical solution,

we propose a Multi-Level Monte Carlo Lagrange-Galerkin method, where the PDEs obtained for each

sample path of the stochastic coefficients is solved by combining a semi-Lagrangian method for time

discretization and a finite element technique for the spatial discretization, adding a fixed point iteration

in the nonlinear case. Numerical results allow to compare the different models and the qualitative and

quantitative behaviour of the XVA.

Keywords: Counterparty risk, XVA, European options, Multi-Level Monte Carlo, semi-Lagrangian

method, finite elements.

1. Introduction

As a consequence of the credit crisis that started around 2008, involving the defaults of big companies,

a highly increasing attention has been paid to the analysis and modelling of counterparty risk, both in

industry and academia (for example, see the books [9, 13, 18]). Particularly, the presence of counterparty

risk arises in the context of derivative contracts, where counterparty risk is related to the possibility that

one counterparty of the contract defaults while owing money associated to the derivatives contract or

while the mark-to-market value of the derivative is positive for the other part of the contract. Apart
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from the posted collateral, a derivative is a contractual agreement that might be broken by one of the

two involved parties, therefore exposing the other party to risk. For instance, let us consider an over-the-

counter (OTC) option sold by a hedger to an investor. If the option expires in-the-money, the hedger

owes the intrinsic value to the investor. Counterparty risk is the credit risk that the hedger will not

be able to fulfil its obligation to the investor (for example, the hedger might go bankrupt). In general,

counterparty risk appears when the counterparty fails to meet the obligations on the trade.

Therefore, the presence of counterparty risk requires some adjustments in the price of the derivative with

respect to the case where there is no counterparty risk. For example, when pricing a European option

without counterparty risk with the classical Black-Scholes model there is a welknown analytical formula

to get the price. However, this formula does not apply when the adjustments related to the presence of

counterparty risk must be taken into account.

Many papers and books have proposed and developed techniques for the valuation of derivatives including

counterparty risk by means of valuation adjustments. The set of all of these adjustments is usually referred

to as total valued adjustment and denoted as XVA (X Valuation Adjustment). Among the adjustments

that can be included in XVA we have (the list is not exhaustive):

• CVA: the cost of hedging counterparty credit risk;

• DVA: the adjustment to a derivative price due to the institution’s own default risk;

• FVA: the correction made to the derivative price to account for a funding cost/benefit related to

counterparty risk;

• KVA: the cost of holding regulatory capital associated to counterparty risk.

In order to model the derivative value including the price of the XVA, three main approaches are con-

sidered in the literature: partial differential equations (PDEs), backward stochastic differential equations

(BSDEs) and formulations in terms of expectations.

In the PDEs based approach, the spatial dimension of the time dependent PDE is equal to the number

of underlying stochastic factors. PDE modelling starts with the seminal article by Burgard and Kjaer

work [8], where the authors pose linear and nonlinear PDEs to obtain the value of risky European deriva-

tives traded between two defaultable parties: the hedger and the investor. For this purpose, they use

dynamic hedging arguments and appropriate Ito formulas. Moreover, depending on the choice of the

mark-to-market value of the derivative at default, either a linear or a nonlinear PDE is obtained. As they

consider the price of the derivative as the unique stochastic factor, PDEs with one spatial dimension are

obtained. In their approach the intensities of default for both the hedger and the investor are assumed
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to be constant, thus entering as constant coefficients in the PDEs

After the work [8], many extension appeared in the literature. For example, in [15] the authors consider

stochastic intensities of default both for the investor and the hedger. In this setting, formulations in

terms of linear and nonlinear PDEs with three spatial dimensions are obtained by means of suitable

hedging arguments and the use of Ito formula for jump diffusion processes. Moreover, by using suitable

Feynman-Fac formulas, equivalent formulations in terms expectations are posed in [15] both for the lin-

ear and nonlinear cases. Numerical methods for the formulations based on expectations are proposed

and numerical examples are discussed in [15], while the solution of the PDEs models is not addressed.

More recently, PDEs formulations with two stochastic factors have been mathematically analysed and

numerically solved for pricing the XVA associated to European and American options in [1] and [3],

respectively. Also the mathematical analysis and numerical solution of one factor models associated to

constant intensities of default has been addressed in [2] and [5]. In these previous works, the numerical

solution is based on a semi-Lagrangian method for time discretization and finite elements for spatial

discretization, while a fixed point iteration is added for the nonlinear PDEs. More recently, in [10] and

[11] penalty methods are proposed for pricing the XVA of European and American options.

As in [15], in this article we aim to consider two stochastic intensities of default, so three stochastic

underlying factors are involved in the pricing of the XVA of the derivative contract. As the the PDEs

models proposed in [15] for this case requires the numerical solution of PDEs with three spatial dimen-

sions, the computational cost would become high when using deterministic numerical methods, such as

finite differences or element methods, for example. Alternative formulations based on expectations would

require the numerical solution by means of Monte Carlo based techniques, with the additional use of fixed

point iterations in the nonlinear case.

Unlike the approach followed in [15] that considers either PDEs with three spatial variables or formula-

tions based on expectations for the case of stochastic intensities of default, we propose an hybrid model

that starts from the PDEs in one spatial variable proposed in [8] for the case of constant intensities of

default and replaces these constant coefficients by the stochastic processes posed in [15] for the intensities

of default. In this way, we obtain PDEs in one spatial dimension with stochastic coefficients, also referred

to as random PDEs. For their numerical solution we propose a Multi-Level Monte Carlo finite element

technique which exploits the combination of Monte Carlo for the simulation of the paths of the stochastic

coefficients and the finite elements solution of the PDEs arising at each path of the stochastic coefficients.

More specifically, we use the Multilevel Monte Carlo (MLMC) method introduced by Michael B. Giles

in [16] and later extended in [17]. This method relies on repeated random samplings that are taken on

different levels of accuracy. First ideas about MLMC come from the works [19, 20], where it was first ap-
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plied for the numerical solution of integral equations. It can be considered an evolution of the alternative

crude Monte Carlo method. Actually, as indicated in [16, 17], MLMC method can significantly decrease

the computational cost of crude Monte Carlo methods by taking most samples with low accuracy and

corresponding low cost while only very few samples are taken at high precision and corresponding high

cost. Note that a PDE with stochastic coefficients has been proposed and solved with a crude Monte

Carlo strategy in [4] for the solution of an investment problem in telecommunications networks planning

under uncertainty. The combination of MLMC with finite element methods has been analysed in [6] for

parabolic PDEs with random coefficients. In [22], a very interesting and different approach has been

proposed, where the dimension of the PDE is reduced by using the numerical solution of a one spatial

dimension Black-Scholes PDE conditional to the knowledge of the volatility Monte Carlo realization in a

Heston model. The method is extended to different options in [21].

The plan of the article is as follows. In the Section 2 we introduce the proposed hybrid model. In Section

3, the numerical methods for solving the the hybrid model are described. In Section 4, some numerical

examples are presented and discussed. In the last section we present some conclusions.

2. Hybrid model for stochastic intensities of default

As in [8] and [15] , we consider two defaultable counterparties: the hedger (H) and the investor (I). As

pointed out in the previous introduction, the main objective of this work is to propose a hybrid model

with three stochastic factors, which is governed by PDEs with two coefficients that are stochastic factors.

This approach avoids the alternative consideration of PDEs with three spatial variables, the numerical

solution of which is more computationally demanding. Thus, in this section we pose PDEs models with

one spatial dimension and two stochastic coefficients.

For this purpose, we start by recalling the model proposed in [8] with just one stochastic factor: the price

of the underlying asset. Thus, we consider a portfolio with four traded assets:

• PR: default risk-free, zero-coupon bond, with yield rR;

• P : default risk-free, zero-coupon bond, with yield equal to the risk free rate r;

• PH : default risky, with constant RH recovery rate, zero-coupon bond issued by H, with yield rH ;

• P I : default risky, with constant RI recovery rate, zero-coupon bond issued by I, with yield rI ;

• S: underlying asset with no default risk.

The two risky bonds PH and P I pay one currency unit at the expiry date T if the issuing party has

not defaulted, otherwise their recovery rates are RH and RI , respectively. Unlike [8], we prefer to start
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considering recovery rates in these risky bonds. Under the real probability measure P, the prices of the

assets PH , P I , PR, P and S satisfy the following stochastic differential equations (SDEs), respectively:

dPH
t = rH(t)PH

t dt− (1−RH)PH
t dJH

t ,

dP I
t = rI(t)P I

t dt− (1−RI)P I
t dJ

I
t ,

dPR
t = rR(t)PR

t dt,

dPt = r(t)Ptdt,

dSt = µ(t)Stdt+ σ(t)StdWt,

where rI(t) > 0, rH(t) > 0, rR(t) > 0, r(t) > 0, µ(t) and σ(t) > 0 denote deterministic functions of the

time t. More precisely, rH is the yield on recovery-less bond of hedger H, rI is the yield on recovery-less

bond of investor H, rR is the rate paid for the underlying asset in a repurchase agreement and r is the

risk-free rate, while µ and σ are the drift and the volatility of the underlying asset, the dynamics of which

is therefore assumed to follow a Geometric Brownian Motion with time dependent parameters. Moreover,

Wt represents a standard Brownian motion process, while JH
t and JI

t represent two independent Poisson

processes that incorporate jumps.

Throughout this article we refer to the value of the risky derivative as the value of the derivative when

counterparty risk is taken into account and is given by the process V̂t = V̂ (t, St, J
H
t , JI

t ) for a function V̂ .

Analogously, we refer to the value of the risk-free derivative as its value when there is no counterparty risk

(both parties of the contract cannot default). In this case the risk-free value is denoted by Vt = V (t, St) for

a given function V . In the case of European vanilla call or put options, the function V can be computed

using a Black-Scholes formula, while in other cases V satisfies the corresponding Black-Sholes PDE model.

Another relevant issue in the modelling of pricing problems including counterparty risk concerns to the

definition of the mark-to-market value (also know as close-out value) of the derivative at default of either

the counterparty or the hedger. This mark-to-market value is given by M(t, St), where the function M

can be defined as M(t, S) = V̂ (t, S, 0, 0) or M(t, S) = V (t, S).

In terms of the previous mark-to-market choice and depending on which part defaults first, the value of

the risky derivative at default is defined as follows:

• if the investor I defaults first, then

V̂ (t, S, 1, 0) = M+(t, S) +RIM−(t, S); (1)

• if the hedger H defaults first, then

V̂ (t, S, 0, 1) = M−(t, S) +RHM+(t, S); (2)
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where RI ∈ [0, 1] (respectively RH ∈ [0, 1]) represents the recovery rate on the derivative mark-to-market

value in case the party I (respectively H) defaults first.

A self-financing portfolio that covers all the underlying risk factors of the model is built in [8]. More

precisely, at time t the hedger sets up a portfolio Πt with δ(t) units of the asset with price St, α
H(t) units

of the bond with price PH
t , αI(t) units of the bond with price P I

t , and β(t) units of cash. After imposing

the self-financing condition to the portfolio, its value at time t hedges out the value of the derivative

contract to the hedger, i.e. V̂t +Πt = 0. Thus, we have

−V̂t = Πt = δ(t)St + αH(t)PH
t + αI(t)P I

t + β(t).

Next, by using Ito lemma for jump-diffusion processes we can compute the change in the risky derivative

price and select the appropriate weights in the portfolio so that all risks can be removed and apply the

arbitrage-free argument to the resulting risk-free portfolio (see [23], for example). Finally, depending on

the choice of the mark-to-market, the following two PDEs are obtained :

• Non Linear PDE (when M(t, S) = V̂ (t, S, 0, 0)): ∂tV̂ +AV̂ − rV̂ = (1−RH)λH(V̂ )− + (1−RI)λI(V̂ )+ + sF (V̂ )+,

U(T, S) = H(S).
(3)

• Linear PDE (when M(t, S) = V (t, S)): ∂tV̂ +AV̂ − (r + λH + λI)V̂ = −(RHλH + λI)V̂ − − (RIλI + λH)V̂ + + sF (V̂ )+,

V̂ (T, S) = H(S).
(4)

where A[·] = 1

2
σ2S2 ∂2

∂S2
[·] + rRS

∂

∂S
[·].

Note that our aim is the computation of the total value adjustment, U = V̂ − V , which is the difference

between the price of the risky and risk-free derivative. Taking into account that V satisfies the classical

Black-Scholes equation of a European vanilla option, the consideration of this classical equation jointy

with the respective equations (3) and (4) leads to the following PDEs for the XVA value function U .

• If M(t, S) = V̂ (t, S, 0, 0), then U satisfies the nonlinear PDE problem: ∂tU +AU − rU = (1−RH)λH(V + U)− + (1−RI)λI(V + U)+ + sF (V + U)+,

U(T, S) = 0.
(5)

• If M(t, S) = V (t, S)) then U satisfies the linear PDE problem: ∂tU +AU − (r + λH + λI)U = (1−RH)λH(V )− + (1−RI)λI(V )+ + sF (V )+,

U(T, S) = 0.
(6)
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where

λH =
hH

1−RH
, λI =

HI

1−RI
(7)

provides the expression of the constant intensities of default of the hedger and investor, respectively, with

hH = rH − r and hI = rI − r being the respective constant spreads of the bonds PI and PH . Moreover,

rF is the hedger funding rate for borrowed cash on hedger’s derivatives replication cash account and

sF = rF − r is the funding spread.

The previous PDEs models correspond to the case of constant intensities of default, as there is only

one stochastic factor St and therefore the spatial dimension of the governing PDEs is equal to one. In

[5] the authors solved the problems (5) and (6) when considering constant intensities of default λI and λH .

As previously indicated, the main objective of this work is to consider stochastic intensities of default,

instead of constant intensities. For this reason, we pose a hybrid model, we assume that the intensities

of default of the investor and the hedger (λI and λH) follow their corresponding stochastic dynamics.

For this purpose, let us consider that when assuming that the short CDS spreads hI
t and hH

t are stochastic,

the following SDEs govern their respective dynamics:

dhI
t = µI(t, hI

t )dt+ σI(t, hI
t )dW

I
t , (8)

dhH
t = µH(t, hH

t )dt+ σH(t, hH
t )dWH

t , (9)

where µI(t, hI
t ) and µH(t, hH

t ) are the drifts of the respective processes under the real probability measure

P, while σI(t, hI
t ) and σH(t, hH

t ) represent their corresponding volatilities. Moreover, W I
t and WH

t are

standard Brownian motions under the real world measure P.

More precisely, we consider Geometric Brownian motions for the stochastic processes hI
t and hH

t and

choose the following expressions for their respective drift and volatility terms:

µI(t, hI
t ) = − kI

1−RI
hI
t , σI(t, ht) = σIhI

t , (10)

µH(t, hH
t ) = − kH

1−RH
hH
t , σH(t, hH

t ) = σHhH
t , (11)

where kI , σI , kH and σH are constant. Note that in the stochastic spreads setting we will assume that

there is no correlation between the two processes defined by equations (8) and (9), as well as between the

stochastic spreads and the price of the underlying asset. Therefore, the identities (7) for the constant case

turn into the following relations between the stochastic processes of intensities of default and spreads:

λH
t =

hH
t

1−RH
, λI

t =
hI
t

1−RI
. (12)
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Next, applying Itô formula in (12) and taking into account the dynamics for the stochastic spreads defined

by SDEs (8) and (9), we can obtain the SDEs for the dynamics of the stochastic processes λI
t and λH

t :

dλI
t = − kI

1−RI
λI
t dt+ σI

hλ
I
t dW

I
t , (13)

dλH
t = − kH

1−RH
λH
t dt+ σH

h λH
t dWH

t . (14)

Once the SDEs satisfied by the stochastic processes λI
t and λH

t have been specified in (13) and (14), the

hybrid model we propose consists in either the linear PDEs problem defined by (6) or the one given by

(5), where the coefficients λI and λH are stochastic and satisfy (13) and (14).

So, the proposed hybrid models can be framed as formulations in terms of PDEs with stochastic coeffi-

cients, also known as random PDEs. Note that for each path of the stochastic coefficients in the PDEs

we obtain a path of the solution, as the solutions of these hybrid formulations are stochastic processes.

3. Numerical methods for the hybrid model

In this section, we describe the proposed numerical methodologies to solve the hybrid model that has

been posed in the previous section. This hybrid model is formulated in terms of (linear or nonlinear)

PDEs with a couple of coefficients that are stochastic processes (namely, the intensities of default) that

satisfy the SDEs (13) and (14). Therefore, for each path of the intensities of default we obtain PDEs with

time dependent coefficients. So, the idea is to simulate a large enough number of paths of the stochastic

intensities of default, obtain the corresponding solutions for each path and compute the expectation of

this solutions as the XVA price.

Basically, the numerical techniques combine two methods: the Multi-Level Monte Carlo method intro-

duced in [16, 17], in order to deal with the stochastic factors λI and λH appearing in the PDEs (5)

and (6), jointly with a Lagrange-Galerkin method proposed in [5] to solve the PDEs with one spatial

dimension that arise in the case of constant intensities of default. In next sections we briefly describe

both techniques.

3.1. Lagrange-Galerkin method for solving PDE models

In this section we assume that the paths of the stochastic intensities of default that satisfy their corre-

sponding SDEs have been obtained or approximated by suitable stochastic numerical methods. Therefore,

next step consists of the numerical solution of the linear and nonlinear PDEs for each path of the stochastic

coefficients. Among the different possibilities, we propose a Lagrange-Galerkin method which combines a

first order semi-Lagrangian (also referred to as characteristics) method for the time discretization with a
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piecewise linear Lagrange finite element method for the discretization in the spatial variable. This com-

bination has been introduced [5] for European options with constant intensities of default and later used

in [1, 3] for European and American options, respectively, with one stochastic intensity of default (i.e.,

two spatial dimensions in the PDEs). Although a detailed description of the proposed method can be

found in [5], in next paragraphs we briefly summarize the main steps by taking into account an updated

notation for the paths of the intensities of default.

As we will need to compute the numerical solution of PDEs in Monte Carlo paths for different meshes,

we show here how to compute the numerical solution Up of the PDE for a fixed path p. Moreover, for

simplicity, only the linear PDE case is explained. Note that the nonlinear case involves an additional

fixed point iteration in the numerical solution with the sign nonlinearity of the right hand side of the

PDE (5) evaluated at the previous step.

Taking into the previous remarks, for each path p, the PDE (6) is rewritten with the updated notation

in the equivalent divergence form, also applying a change of the time variable from the physical time t

to the time to maturity τ = T − t:

∂Up

∂τ
− ∂

∂S

(
σ2

2
S2 ∂Up

∂S

)
+ (σ2 − rR)S

∂Up

∂S
− (r + λH

p + λI
p)Up

= (1−RH)λH
p (V )− + (1−RI)λI

p(V )+ + sF (V )+,

Up(0, S) = 0,

(15)

where λI
p and λH

p denote the (time dependent) paths p of the intensities of default and Up denotes the

associated path p of the XVA stochastic process. Next, we introduce the material derivative of the

function Up, as follows:

DUp

Dτ
(τ, S) =

dUp

dτ
(τ, S(τ)) =

∂Up

∂τ
(τ, S) +

∂Up

∂S
(τ, S)

dS

dτ
(τ), (16)

where S = S(τ). Note that the material derivative of Up represents the derivative along the integral

paths (characteristics curves) associated to the vector field v(S) = (σ2 − rR). In terms of the material

derivative, equation (15) can be written in the following way:

DUp

Dτ
− σ2

2

∂

∂S

(
S2 ∂Up

∂S

)
+ (r + λH

p + λI
p)Up = (1−RH)λH

p (V )− + (1−RI)λI
p(V )+ + sF (V )+. (17)

Next, for the time discretization of equation (17) we consider an upwind approximation of the material

derivative along the characteristics curves at the time discretization nodes. More precisely, for a natural

numberN > 0, a uniform mesh with the time step ∆τ = T/NT and the nodes τn = n∆τ, n = 0, 1, . . . , NT

are considered. For each node τn, the following finite differences approximation is chosen:

DUp

Dτ
(τn+1, .) ≈

Un+1
p − Un

p ◦ χn

∆τ
, (18)
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where χn(S) represents the position at time τn of a point moving through the characteristics curve χ of

the velocity field that passes at point S at time τn+1. Therefore, χn(S) can be obtained from the solution

χ(τn+1, S; .) of the following Cauchy problem:
dχ

dτ
(τn+1, S; τ) = (σ2 − rR)χ(τ

n+1, S; τ),

χ(τn+1, S; τn+1) = S,
.

Actually, the analytical solution of (3.1) implies that χn(S) = χ(τn+1, S; τn) = exp((rR − σ2)∆τ , for

n = 0, 1, . . . , NT − 1.

Next, replacing the approximation (18) in (17), we pose the semidiscretized problem in time at step n:

Un+1
p − Un

p ◦ χn

∆τ
− σ2

2

∂

∂S

(
S2

∂Un+1
p

∂S

)
+ (r + λH

p,n+1 + λI
p,n+1)U

n+1
p =

(1−RH)λH
p,n+1(V

n+1
p )− + (1−RI)λI

p,n+1(V
n+1
p )+ + sF (V n+1

p )+,

(19)

where λH
p,n+1 and λI

p,n+1 are the simulated values at time tn+1 on the path p of the intensities of default.

For the spatial discretization, we consider a large enough value S∞ to define the bounded computational

domain Ω = [0, S∞] and use a piecewise linear Lagrange finite element method as in [5]. For this purpose,

for a fixed natural number NS > 0, we consider a uniform mesh of the domain Ω = [0, S∞], with nodes

Si = i∆S, i = 1, . . . .NS + 1, where the mesh step is ∆S = S∞/NS . Associated to this uniform mesh, a

piecewise linear Lagrange finite element discretization is considered. Thus, the fully discretized problem

aims to find Un+1
p ∈ Wk, such that:

(1 + (r + λH
p,n+1 + λI

p,n+1)∆τ)

∫ S∞

0

Un+1
p ϕdS − ∆τ σ2

2

∫ S∞

0

S2
∂Un+1

p

∂S

∂ϕ

∂S
dS

=

∫ S∞

0

(Un
p ◦ χn)(S)ϕdS (20)

−∆τ

∫ S∞

0

((1−RH)λH
p,n+1(V

n+1
p )− + (1−RI)λI

i,n+1(V
n+1
p )+ + sF (V n+1

p )+)ϕdS,

for all ϕ ∈ Wk,0, where

Wk = {ϕ : (0, S∞) → R|ϕ ∈ C(0, S∞), ϕ|[Si,Si+1] ∈ P1}, (21)

Wk,0 = {ϕ ∈ Wk|ϕ(0) = 0, ϕ(S∞) = 0}, (22)

with P1 being the space of polynomials of degree less or equal than one. Note that a variational for-

mulation is implicitly posed before the discretization with the finite element method (see [5] for the

details).

3.2. Discretization of the paths of intensities of default

In order to solve the hybrid model proposed in Section 2, we must address the solution of PDEs with

stochastic coefficients. More precisely, for each path the values of the intensities of default at the time
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discretization nodes tn are needed for the numerical solution of the PDE. For this purpose, the paths of

the intensities of default are simulated by solving their respective SDEs (13) and (14).

For the numerical solution of SDEs (13) and (14), an Euler-Maruyama scheme, with the same time step

as the time discretization of the PDE, is applied. In the case of a crude Monte Carlo method, starting

from λH
p,0 = λH

0 and λI
p,0 = λI

0 given, we approximate the path p, with p = 1, . . . , NP , as follows:

λH
p,n+1 = λH

p,n − kI

1−RH
λH
p,n∆τ + σHλH

p,n∆WH
p,n, (23)

λI
p,n+1 = λI

p,n − kI

1−RI
λI
p,n∆τ + σIλI

p,n∆W I
p,n, (24)

for n = 0, 1, . . . , NT − 1, and ∆WH
p,n and ∆W I

p,n being the Brownian increments of path p sampled from

two independent normal distributions N(0,
√
∆τ).

Note that in the Multi-Level Monte Carlo method a more smart sampling procedure is addressed and

notation becomes a bit more complex.

3.3. Monte Carlo combined with Lagrange-Galerkin method

As we will compare it with the proposed Multi-Level Monte Carlo, in this section we describe the use of

the crude Monte Carlo (MC) method that involves the following three steps:

1. Sample: We approximate NP sample paths of the stochastic intensities of default λI and λH by

using the previously described Euler-Maruyama scheme according to expressions (23)-(24).

2. Solve: For each approximated path of the stochastic intensities of default λI and λH , we solve

numerically the linear PDE (6) or the nonlinear one (5) by means of the proposed Lagrange-

Galerkin method. We denote the approximated solutions at the mesh nodes at the path p, by

U i,n
p = Up(t

n, Si).

3. Expected value: As we are interested in the XVA value at time to maturity τ = T (which corresponds

to time t = 0) and T = τNT
in the time discretization mesh, the expectation of the stochastic

process U at the spatial mesh node Si and the time mesh node τNT
is estimated by the sample

mean (average) of the previously computed approximated solutions U i,NT
p , for p = 1 . . . NP , i.e.:

E[U i,NT ] =
1

NP

NP∑
p=1

U i,NT
p . (25)

3.4. Multi-Level Monte Carlo combined with Lagrange-Galerkin method

As previously explained, in this work we aim to solve a PDE with stochastic coefficients by combining the

numerical the solution of a PDE for the given sample paths of the stochastic process with Monte Carlo

techniques to compute the expected value of the solution. As the use of a crude Monte Carlo technique

11



could be very expensive from a computational point of view, we propose the use of the Multi-Level Monte

Carlo method (MLMC), introduced and described in detail in [16, 17] and can be also understood as a

variance reduction technique. As it is shown and proved in [16, 17], the MLMC is used to evaluate an ex-

pected value with reduced computational costs respect to the use Monte Carlo method. One of the main

ideas of MLMC comes from the sampling of different approximation of the quantity whose expectation

we want to estimate. Also it borrows some ideas from multigrid methods for solving PDEs. A detailed

mathematical analysis of MLMC combined with finite elements for parabolic PDEs with stochastic coef-

ficientes can be found in [6].

Note that MLMC has already been used for solving elliptic PDEs with random coefficients in [12], for

example. In this setting, one of the main ideas behind MLMC-FEM methods is to simultaneously draw

appropriate Monte Carlo samples on a hierarchy of nested spatial grids. As in our case, we are dealing

with parabolic PDEs, we will consider an appropriate sampling of the random coefficients for the corre-

sponding nested spatial and time meshes, which uses more sample paths for coarser meshes and decreases

the number of paths as soon as meshes become finer.

More precisely, we consider a set of NL nested uniform spatial meshes of the computational domain

[0, S∞]. For l = 0, . . . , NL, let ∆xl be the step size of the spatial mesh at the level l of refinement, with

∆x0 being the step size of the mesh at level 0. We denote by N l
S the number of nodes at the spatial

mesh of level l. We choose ∆xl = 2−l∆x0. Concerning the nested meshes in the time discretization, if

∆τ0 is the time step of the mesh at level 0, the time step for a mesh at level l is chosen as ∆τl = 4−l∆τ0.

Moreover, we denote by N l
T the number of nodes in the time mesh of level l.

At level l, each sample path of each intensity of default requires the sampling of N l
T values, so that we

have a sample at each discretization time. More precisely, in MLMC setting, starting from λH
p,0 and λH

p,0

given, at level l we approximate the path p as follows:

λH
p,n+1,l = λH

p,n,l −
kI

1−RH
λH
p,n,l∆

lτ + σHλH
p,n,l∆WH

p,n,l, (26)

λI
p,n+1,l = λI

p,n,l −
kI

1−RI
λI
p,n,l∆

lτ + σIλI
p,n,l∆W I

p,n,l, (27)

for n = 0, 1, . . . , N l
T , p = 1, . . . , N l

P with ∆WH
p,n,l and ∆W I

p,n,l being the Brownian increments of path p

sampled from two independent normal distributions N(0,
√
∆τl). By using these samples, we first solve

the PDE with the semi-Lagrangian method for the spatial and time meshes corresponding to level l.

Moreover, assuming that N l
T = 4N l−1

T , for each of the previous sample paths at the level l, we can

extrapolate the N l−1
T samples of the intensities corresponding to the immediate coarser nested time mesh

and use them to solve the PDE in the mesh of level l − 1.

12



If we denote the number of sample paths at level l by N l
P , then we can estimate the expectation of the

difference between the results obtained with meshes of levels l and l − 1, that is:

E[U i,N l
T ,l − U i,N l−1

T ,l−1] =
1

N l
P

N l
P∑

p=1

(U
i,N l

T ,l
p − U

i,N l−1
T ,l−1

p ) . (28)

As we are using the same sample paths due to the extrapolation procedure, we reduce the variance of

the estimator of (28) in the MLMC method for a fixed computational cost.

Starting from l = 1, we can repeat the process and the estimation of the expectation of the XVA at τ = T

is given by

E[U i,NL
T ,L] = E[U i,N0

T ,0] +

NL∑
l=1

E[U i,N l
T ,l − U i,N l−1

T ,l−1] . (29)

Previously, at level l = 0 we start solving the problem in the coarsest meshes in space and time on the

different paths from the samples at that level to obtain E[U i,N0
T ,0], which is given by:

E[U i,N0
T ,0] =

1

N0
P

N0
P∑

p=1

U
i,N0

T ,0
p . (30)

Note that a different number of paths N l
P is used at each level, so that a larger number of paths is used

in the coarser meshes, while using a lower number of paths for the finer meshes.

In view of the previous description, the main steps of the MLMC Lagrange Galerkin algorithm are the

following:

1. Start with l=0:

(a) Sample: Simulate N0
P paths of λI

0 and λH
0 with N0

T time steps,

(b) Solve: For each path, solve the nonlinear PDE (5) or the linear PDE (6) with the spatial and

time meshes at level l = 0.

(c) Expected value: Obtain the expectation associated to level l = 0.

2. For each l = 1, . . . , NL:

(a) Sample: Simulate N l
P sample paths of λI

l and λH
l with N l

T time steps.

(b) Solve: For the paths λI
l and λH

l , the PDEs (5) or (6) are solved. Also solve the same PDE for

the extrapolated samples λI
l−1 and λH

l−1 obtained from the previous samples of λI
l and λH

l .

(c) Expected values: Compute the expectation in formula (28).

3. XVA price at final time τ = T , (i.e., t = 0): Compute the expectation given by expression (29).

13



4. Numerical results

In this section we aim to illustrate the performance of the here proposed hybrid model and its numerical

solution by means of Multilevel Monte Carlo technique when combined with a Lagrange-Galerkin method

to solve the PDEs arising for each sample path of the stochastic coefficients. For this purpose, we consider

the example of a European put option, the payoff of which is given by:

H(S) = max(K − S, 0). (31)

For the put option we assume that the maturity is T = 0.5 and the strike is K = 2. Moreover, the initial

time is set to zero.

Besides the previous data about the put option, Table 1 contains the values of the other financial param-

eters that have been considered to obtain the numerical results.

Parameter Definition Value

r Risk-free rate 0.04

σ Volatility of the underlying asset S 0.3

λH
0 Hedger intensity of default at time 0 0.04

RH Hedger recovery rate 0.4

λI
0 Investor intensity of default at time 0 0.04

RI Investor recovery rate 0.3

rR Rate associated to a repurchase agreement 0.06

σH Volatility of λH 0.2

σI Volatility of λI 0.2

kH constant in the drift term of λH 0.1/0.3/0.5/0.7

kI constant in the drift term of λI 0.1/0.3/0.5/0.7

Table 1: Values of the parameters used in the numerical tests

Throughout this section we consider the bounded computational domain that corresponds to S∞ = 20 for

the involved PDEs. In order to compute the reference solution, we use a MLMC technique with NL = 6

levels, with N6
S = 2049 nodes in the finer spatial finite element mesh, while N6

T = 16384 in the finer time

mesh and considering N6
P = 26 simulations at the finer level.

In the computation of the numerical solution with MLMC, the number of nodes in the spatial finite

element meshes for the different levels is {N l
S , l = 0, . . . , 5} = {33, 65, 127, 257, 513, 1025}, while in

the time meshes is {N l
T , l = 0, . . . , 5} = {4, 16, 64, 256, 1024, 4096}. Moreover, the number of paths
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computed at the different levels is {N l
p, l = 0, . . . , 5} = {1664, 832, 416, 208, 104, 52}.

In the MC technique we have used the different spatial and times meshes of the different MLMC levels

and NP = 1664 simulations.

In Figure 1, we show the error in MC and MLMC methods versus the execution time of the code. More

precisely, in the MLMC case, the error between the previously described reference solution and the ones

obtained at the different levels l = 1, . . . , 5 is shown. In the case of MC, we consider the difference between

the reference solution and the ones obtained with the meshes at different MLMC levels and NS = 1664

simulation. As we can see in Figure 1, the error provided by the MLMC is smaller than the MC error for

a given computational cost, although we have used a more reduced number of samples for the MLMC.

This justifies the choice of MLMC for our algorithm to solve the XVA computation with the hybrid model.

All algorithms have been implemented from scratch in C++. When using MLMC with NL = 5, the

code takes only 90 seconds to compute the final result, on a laptop provided with an Intel i7 processor

(4 Physical CPUs, 8 Virtual) and 16GB of Memory.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
log10(seconds)

3.6

3.4

3.2

3.0

2.8

2.6

2.4

lo
g 1

0 (
er

ro
r)

|| ||  error vs. execution time
MLMC
MC

Figure 1: Error MLMC VS Error MC, with respect to execution times.

.

Next, we present the comparison of the results obtained with the hybrid model that incorporates stochas-

tic intensities of default with the ones obtained when both intensities are assumed to be constant. The

case of constant intensities of default has been numerically addressed in [5] for the case of European

options, while the mathematical analysis of the model has been developed in [2]. The comparison has
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been addressed for both the linear and the nonlinear PDEs.

More precisely, we start with a set of examples concerning the linear PDE case. In Figure 2 we consider

null intensity of default of the investor (i.e., λI = 0), while the hedger can have constant or stochastic

intensity of default. In the stochastic case, we assume an initial intensity of default λh
0 equal to the

constant one λH = 0.04. Note that the more negative value of the XVA corresponds to the constant case,

while the XVA becomes less negative when the drift parameter kH of the intensity of default becomes

higher. Next, in Figure 3 we just consider λI = 0.04 instead of λI = 0 as in Figure 2. We observe the

same behaviour when increasing the drift parameter kH , although the respective XVA values are more

negative. Next, in Figure 4 we consider the comparison between both λI and λH stochastic and both

constant. Again, the initial values of the stochastic case coincide with the respective constant values.

Note that the consideration of stochastic λI instead of constant makes the XVA values less negative, as

we can see from the comparison of Figures 3 and 4.

In summary, for the linear PDE case, we have distinguished three different cases:

• λH is constant and λI is null, compared to the results of the same PDE, with λH is stochastic

(kH = 0.1, 0.3, 0.5, 0.7) and λI null.

• λH and λI are constant, compared to the results of the same PDE, with λH stochastic (kH =

0.1, 0.3, 0.5, 0.7) and λI constant.

• λH and λI are constant, compared to the results of the same PDE, with λH and λI both stochastic

(kH = kI = 0.1, 0.3, 0.5, 0.7) .
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Figure 2: XVA with linear PDE: λI null and λH stochastic (λH
0 = 0.04 ) versus λH = 0.04 constant.
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Figure 3: XVA with linear PDE: λH stochastic (λH
0 = 0.04 ) and λI = 0.04 constant versus λH = 0.04 and

λI = 0.04 constant.
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Figure 4: XVA with linear PDE: λH and λI stochastic (λH
0 = 0.04, λI

0 = 0.04 ) versus λH = 0.04 and λI = 0.04

constant.

Next, in Figures 5, 6 and 7, we display the result for the analogous examples when non linear PDE

is considered. The behavior observed in each example of the nonlinear PDE case is similar to the

corresponding one of the linear case. Also note that the consideration or not of stochastic intensities

usually has more impact than the choice of a linear or nonlinear PDE (which is related to the choice of

the mark-to market value).
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Figure 5: XVA with nonlinear PDE: λI null and λH stochastic (λH
0 = 0.04 ) versus λH = 0.04 constant.
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Figure 6: XVA with nonlinear PDE: λH stochastic (λH
0 = 0.04 ) and λI = 0.04 constant versus λH = 0.04 and

λI = 0.04 constant.
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Figure 7: XVA with nonlinear PDE: λH and λI stochastic (λH
0 = 0.04, λI

0 = 0.04 ) versus λH = 0.04 and λI = 0.04

constant.

5. Conclusions

In this article we propose XVA pricing models for European options that incorporate three stochastic

factors, namely, the price of the underlying asset and the intensities of default of the investor and the

hedger. The model is formulated in terms of nonlinear or linear PDEs with stochastic coefficients and

one spatial dimension. The spatial variable represents the asset price, while the stochastic coefficients are

the intensities of default, whose dynamics are prescribed by means of appropriate stochastic differential

equations.

For the numerical solution, we propose a Multi-Level Monte Carlo Lagrange-Galerkin method, where the

PDEs obtained for each sample of the stochastic coefficients are solved by combining a semi-Lagrangian

method for time discretization with a finite elements technique for the spatial discretization (Lagrange-

Galerkin mehod). Unlike the more classical Monte-Carlo method for solving PDEs with stochastic co-

efficients, MLMC provides better results by considering nested meshes in space and time with a larger

number of sample paths of the stochastic coefficients for the coarser meshes than for the finer ones.

Numerical results illustrate the advantage of MLMC with respect to MC in terms of accuracy and com-
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putational cost. Moreover, the numerical results allow to compare the XVA values when models with

constant intensities or stochastic ones are consedered.
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